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Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA 

Received 12 August 1991 

Ahtract. Motivated by recent simulation results of the suppression of interfacial roughen- 
ing, we study analytically the interfaces in non-equilibrium steady states for systems with 
bulk conservation. The general method of deriving interfacial properties from the bulk is 
developed, and the necessity of employing the full dynamics, even for static properties, i s  
exhibited. Applying this to the randomly driven diffusion system, we obtained novel results. 
Speciiically, height-height correlation diverges weakiy as i i q  far smaii wavevector q. thus 
displaying the first analytical evidence of roughening suppression far driven systems. 

Many interesting physical phenomena are primarily interfacial in origin and character, 
such as those of crystal growth (Langer 1987), nucleation and spinodal decomposition 
(Gunton et al 1984), roughening (van Beijeren and Nolden 1987), and membranes 
(Nelson et a/  1989), to name just a few. They have attracted the attention of theoretical 
and experimental physicists for many decades. In addition, there is considerable interest 
in the relationship between interfacial and bulk degrees of freedom. 

There exists a vast literature on interfaces, mostly devoted to systems at or close 
to equilibrium. By contrast, difficulties arising from the absence of a free energy hinder 
analyses of systems in non-equilibrium steady states, so that their properties are far 
less well explored and understood than their equilibrium counterparts. 

Although there has been intense recent activity devoted to the physics of steadily 
growing interfaces. most studies are based on a phenomenological approach (e.g. 
Kardar et a/ 1985, Sun ef a/ 1989, Demda et a/ 1991 ), focusing on the interface variable 
alone, usually with local interactions. The advantage lies in its simplicity which, in 
some cases, even allows exact solutions. While this purely interfacial description is 
very useful, the neglect of bulk degrees of freedom can no longer be justified if the 
bulk dynamics is govemed by conservation laws. For example, it is known that bulk 
diffusion induces non-local spatial interactions and memory effects for the interface 
(Langer and Turski 1977, Kawasaki and Ohta 1982). Such non-localities are responsible 
for the slower decay of interfacial fluctuations than those without bulk conservation. 
T?le:efn~n:e, i: becnz-es xecessa:y, Fo: ccxserved sys!ems, !o derive In:e:fzcia! p:ope;’.ies. 
by systematically eliminating the bulk degrees of freedom, starting from the full bulk 
equations. 

Ideally, such an approach should be carried out for the entire microscopic system, 
by ‘single out’ the usually massive bulk modes. However, this turns out to be too 
difficult to be practical in most cases. Instead, for sufficiently simple systems, one 
normally starts, for statics, with a coarse-grained Landau-Ginzburg Hamiltonian (Diehl 
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er al 1980), and for dyanmics (e.g. models A-D in critical dynamics), with the 
corresponding stochastic kinetic equations (Langer and Turski 1977, Bausch et all981,  
Kawasaki and Ohta 1982, Jasnow and Zia 1987, Bausch et a1 1991). 

The interplay between the interface and the bulk is even more important when the 
system is driven out of equilibrium. It has been recognized in recent years that 
correlations in driven systems often exhibit long-range, power-law decay (Spohn 1983, 
Bak ef a/ 1987, Zhang et a/ 1988, Chen er a/ 1991). Conspiring with the usual non-local 
influences of bulk diffusion, such long-range effects inextricably couple the slow modes 
of the bulk to the interface. In addition, without the aid of an undisputed concept of 
free energy for non-equilibrium steady states, one must work with the dynamical 
equations, even for analysing time independent properties. 

In this letter, we consider an interface separating the two coexisting phases far 
below criticality, in a system driven into a non-equilibrium steady state. A major 
motivation is the observation, in Monte Carlo simulations (Leung et a/ 1988, 1989), 
of the suppression of interfacial roughness in a diffusive lattice gas model, driven by 
a uniform external field E along an axis. So far, there is still no theoretical understanding 
of this effect. Here, we study a related hut simpler model: the randomly driven system 
(Schmittmann and Zia 1991), in which the magnitude of E is a Gaussianly distributed, 
annealed random variable with zero mean. This system is ‘simpler’ because particle-hole 
symmetry is preserved and there is no giobai current. It is nevertheless a non-equilibrium 
system, displaying many of the characteristics of the uniformly driven case (Hwang 
et a/ 1991), e.g. a second-order phase transition at half-filled density. Our analysis 
shows that, e.g. interfacial correlations are indeed significantly suppressed, from the 
usual 1 f q2 divergence to only l/q. Work is in progress to generalize this understanding 
to the uniformly driven case, in which the effect of roughness suppression was originally 
observed. 

As revealed by computer simulations, the low-temperature configuration of the 
randomly driven system also consists of a particle-rich phase separated from particle- 
poor phase by a planar interface whose tangent is parallel to E. Since the prominent 
fluctuation is that associated with the interface, our main goal is the derivation of 
interfacial properties in the low-frequency, long-wavelength limit, from the bulk 
equation OF motion. 

Starting with the Langevin equation describing the action of E ( x ,  f )  on + (in the 
language of king spins, + is the local spin density), we integrate out E to get new 
effective parameters. The resulting equation takes the form of a generalized model-B 
equation (Schmittmann and Zia 1991): 

-= J+ [ rllJz+ rLV2- ( a  J4+ pv4+2yJ2Vz)]+ + (gllJ2+ g,V2)4’/3!+ 7 (1) 
Jf 

where d(V) stands for gradient in the parallel (transverse) direction with respect to E. 
For generality, we have allowed for full anisotropies, 7 is the Gaussian noise, correlated 
by(v(x, f)v(x‘,  f’))= NS(x-x’ ,  f- f ’ ) ,  with strength N -(nllJz+ n,V2). This equation 
has the following important properties. 

1. As a result of random stimng, the eiiective temperature is higher for the direction 
parallel to E (Schmittmann and Zia 1991, Cheng et a1 1991). To model this effect, we 
assume rI1 > r, > 0 above the critical temperature T,. Thus, as T + T, from above, r, 
vanishes first, while rI1 remains positive. This feature distinguishes a non-equilibrium 
system from an equilibrium one with anisotropic interactions of diffusion constants. 
For T <  T,, we must have r,<O, to yield the correct steady state solution (which we 
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denote by &) for two-phase coexistence, with the interfaces tangent to E. Since a 
configuration with interfaces perpendicular to E has never been observed in simula- 
tions, it is suflcient to assume rll > 0, so that (1) will not admit such solutions. (For 
our purposes, the necessary condition is weaker. However, the physics associated with 
it is less clear.) 

2. For systems in equilibrium, the fluctuation-dissipation theorem insures that the 
noise correlations operator, N, he proportional to the diffusion operator, D = 
rllJ2 + rLV’. An important characteristic of non-equilibrium steady states is the violation 
of this theorem so that N & D in general, giving rise to power-law decay of correlations 
without any parameter tuning, i.e., generic scale invariance (Zhang e f  a/  1988, Grinstein 
et a/ 1990, 1991, Cheng et a/ 1991). 

Although in principle a fully non-local and nonlinear equation for the interface 
should be derived from (1) (Leung 1988, Hemindez-Machado and Jasnow 1988), there 
are some technical, as well as philosophical, difficulties in this approach. Here, we 
rather focus on the linearized equation and discuss novel aspects in two specific 
properties: (a) the dispersion relations for capillary waves, which governs the decay 
rate of long-wavelength fluctuations, and (b)  roughening’ of the interface, via the 
relationship between the statistical width of the interface and system sizes. For (a), 
we need only the deterministic part of (1). while for (b), we need to consider the noise 
also. 

Dispersion relafion. It is easy to find the stationary solution 4c to (1) under the boundary 
conditions r$ + * M  as z -t *m, where M = -6g,/r, is the magnitude of the spin 
densities of the two ordered phases, and z labels an arbitrarily chosen direction among 
the ( d  - 1)-dimensional subspace orthogonal to E, since the system is rotationally 
invariant in that subspace, is simply M tanh(z/c), describing a planar interface of 
intrinsic width # = (-2/rJ”’ centred at z = 0, with its normal along z and perpendicular 
to E. Of the d - 1 coordinates orthogonal to z, let xII be parallel to E, and y be the 
remaining (d -2)-dimensional vector orthogonal to both xII and I. For small fluctuations 
about &, we linearize (the determinisitic part 00 (1) in ,y = 4 -&qeiqxl+ik’y, to arrive 
at 

-iw,y = {-rllq2+ rL(J:- k2) - [ a q 4 + B ( J : -  k’)’-2yq2(d: - k’)] 

-tIg1q2-gL(J: - k2)1+:1x 

E-Fx.  (2) 
Thus we have exploited the translational symmetry and partly diagonlized the differen- 
tial operator in the usual way. Finally, diagonalizing F will give the dispersion relation, 
U( q. k), associated with a particular mode (eigenfunctions of F ) .  To take full advantage 
of an anticipated small q and k expansion, the fluctuation operator is decomposed as 
F = AB + A, with 

A = K ’ - J :  

B = rll+ bq2-p(J:- k’)+fg,b: (3)  
A =  s q 2 + 0 ( q 4 )  

where ~=(k’+g11q~/g , )”~ ,  b - 2 y - g l l p / g ,  and E =  r l l -g l lrJgL.  
We emphasize that, due to anisotropies induced by random stirring, E > 0. Without 

these anisotropies, A = 0 and the usual form of model B is recovered (Jasnow and Zia 
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1987). The operator A arises from conservation; its inverse supplies the non-local 
operator discussed above. 

Note that A is a positive operator, B is non-negative and A is just a constant, while 
all three are Hermitian. So, F can be diagonalized: Flm) = AJm), with a non-negative 
real spectrum, though F itself is not Hermitian. Thus, at least locally, our solution is 
stable. For later convenience, we note that F+ = BA+ A is the adjoint of F, diagonalized 
by the adjoint eigenstates lfi). In our case, they are simple: 1%) = A-'lm).Theeigenstates 

The eigenstates of B are known (Langer 1967), but only one (band) is the result 
of 4, breaking the translational invariance io z. Therefore, we expect 4:s d+,/dr to 
remain an exact eigenstate of F with q = k = 0. This is the Goldstone mode. By a 
straightforward perturbation expansion in small q and k, we find the lowest eigenstates 
associated with it. Labelled by Il), they are, apart from the plane wave factors, 

excitations about a planar interface, with wavevector (4, k ) .  Their dispersion relation 
is: 

"-- L^ --.I. ,:.."A L.. ,Zl..R- f can UG "IIII"IIuIIIIaIILs" uy \ r n  , n , - ""l. 

h l ' . A ' l n l n 2 \  ..,harn hl' is. -nrmol:.,n+:nn r,...rtn-t T1.arn " - ~  the ,.n.-:lln-.. ..,".. ~ 

"'.pc I v , y  ,, ".a*.* " 1  I I " L . I . n L I I L . n L L " . L  I"I..,LP..L. 1 L l r a C  ',.e ..,r s,"y"'a1y-"a"c 

2 
-io = -A ,=- sqZ- -K(bq2+j3k2)+ .  . . . (4) 

35 
As a result of the first term, the capillary waves can no longer be separated from the 
bulk diffusive modes by the wavevector dependence in the dispersion relations. Unlike 
model B where -io= 4' (Langer and Turski 1977, Jasnow and Zia 1987), they cannot 
be singled out as the slowest modes simply by considering fluctuations with the longest 
wavelengths. 

However, note that E vanishes with the drive, so that, for small driving fields, an 
h!eres!ing E~OSSQVCT f r ~ m  1 q2 b e h ~ l o c r  to q3 C ~ E  occcr In d = 2, ~ l h e r e  Y 4 n 1. ._ A 
similar crossover, between anisotropic scaling, occurs in d * 3. 

Roughening. We now outline the calculation of the height-height correlation function 
and the statistical width squared, w2, for the interface. For all the cases we know, 
analysis linear in ,y is sufficient to  capture the correct physics, e.g., sizes ( L , , ,  LL) 
dependence and roughness. 

For our purposes, it is more convenient to recast (2) in the form of a dynamic 
functional, 9: 

with 4 the Martin-Siggia-Rose response field conjugate to 4 (Martin er nl 1973, 
Janssen 1976, DeDominicis 1976). Since we are considering only the quadratic approxi- 
mation to 9, the correlations for the fluctuations ,y are easily found, in matrix form: 

(6) 
Inserting complete sets into (a), we integrate over w to give equal-time correlations: 

(,y,y) =2(-iw + F)-'N(iw +F+)-' .  

This equation is, in fact, completely general, as long as F has a real, positive spectrum. 
As a comparison, for systems near equilibrium, the fluctuation dissipation theorem 
insures that F =  NT, where I' is the 'propagator' in the static theory, similar in form 
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to B in ( 3 ) .  Then, simple manipulation using (6) leads to the equal-time correlation 
r-’. In our case, N =  n,A+O(q2), so that (7) also simplifies to (,y,,,,y,,J=nr8mn./hm, 
at the lowest order. 

Now, we are ready to find the height-height correlation function C, associated with 
capillary waves, described by ,y = h(x)+:. Recalling that 11)m +:, we have 

where we have used the fact that 4: is essentially a constant (2M) in momentum space 
for evaluating N. 

In d =2, K a q ,  so that C(q) - l / q  for small q, in contrast to the well known l /q‘ 
for equilibrium. For d a 3 ,  correlations are highly anisotropic, being the usual l / k 2  in 
directions transverse to the field. 

Finally, the width squared is given by 

w2= 1 dd-’k [ dqC(q ,  k) .  (9) 
J I / L ~  J i / L y  

Completing the integrations, we get In LII behaviour in d = 2 (for LII >> I/&(),  and finite 
w2 in d = 3, for both LII and L, going to infinity in either order. This is in sharp contrast 
to the interfaces of equilibrium systems, which are rough for d s 3  (van Beijeren and 
Nolden 1987). 

At present, there is not yet any experimental result, but the system can easily be 
simulated on a computer. Preliminary results indeed show very strong suppression of 
roughening, though it is not yet possible to assert from the data the predicted Ln L 
behaviour in ZD. One problem which plagues the data analysis is unusually strong 
finite-size effects. In equilibrium systems, the finite-size dependence of w2(LII, LA) is 
completely dominated by LII, since the effects of finite L,  are exponentially small-a 
consequence of exponential decay of bulk correlation well below T,. In contrast, bulk 
correlation in this class of non-equilibrium steady states is known to decay as 1 J x ”  
(Zhang et a/ 1988, Cheng et a/ 1991). Thus, we can expect the presence of long-range 
effect which, mediated through long-range correlations from the boundaries to the 
interface, vanishes only as a power of L, . 

We have indeed observed such a finite-size effect in simulation, and we can also 
demonstrate it analytically. For simplicity, consider d = 2. Replacing the lower limit 
ofintegrationin(E?)byl/L,, wededucethat C ( q ) - ’ - & ( q - a , / L , + . .  .) forq>>l/L, 
under periodic boundary conditions, with a, of order unity. Consequently, careful 
extrapolation for both longitudinal and transverse system sizes are necessary when 
simulating roughening in steady states. 

Before we conclude, we comment on the generality of our results. One obvious 
question is whether the 4’ terms in (1) (with origins in a 44 potential) are special. 
Looking over our analysis, it is straightforward to  see that our results will be valid for 
arbitrary nonlinear terms, provided those associated with a’ and V2 are proportional 
to each other. We believe, though we have not proved, that the situation is less restrictive. 
Work is under way on exactly solvable models, from which we hope to gain enough 
insight to prove the more general case. 
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To conclude, we studied interfacial properties in a non-equilibrium steady state 
system. We emphasized the need of working with the bulk equation of motion in the 
two-phase region. Extracting those modes which have a Goldstone character, we 
identify interface fluctuations and showed that, unlike in equilibrium, 'static' properties 
cannot be studied without considerations for the full dynamics (see discussion after 
(7)). For the specific model of randomly driven diffusive systems, we calculated the 
dispersion relation, the correlation function, and the statistical width of the interface. 
Aiiaijiiicai evidence of rougheiiiiig suppression, reminisceni of our previous finding 
by simulations in the uniformly driven system, is provided for the first time. We believe 
that this study will serve as an excellent starting point for understanding interfacial 
behaviour in more complex non-equilibrium systems. 

We thank G Grinstein and B Schmittmann for enlightening discussions. This research 
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